Electronic Weapons: Two Annoying Norwegian Ships


August 7, 2020: Norway is moving its ELINT (electronic intelligence) ship Marjata from the port of Kirkenes, which is eight kilometers from the Russian border, to Harstad. The new home port for Marjata is 334 kilometers to west and beyond the range of the many Russian EW (Electronic Warfare) systems. Kirkenes had become a problem because it is on the Barents Sea, which is an area north of the Norwegian and Russian coasts where Russian warships and military aircraft frequently train. Marjata goes to sea to monitor these activities. Russia was regularly testing its new EW systems near Kirkenes, which made life difficult for the technical personnel and some of the ELINT gear on the Marjata. Moving the home port of Marjata from Kirkenes to Harstad (on the North Sea) solved that problem. Norway would not explain exactly why and they often do that when questions are asked about how their ELINT works. The Russians still have an opportunity to use their EW systems on Marjata but only when the ship is in the Barents Sea seeking out Russian ships and aircraft equipped with EW systems.

The 126 meter (400 foot) long Marjata entered service in 2016 and was the fourth Norwegian ELINT ship with that name. The previous Marjata, which entered service in 1992, remained in service but renamed the Eger and the two ELINT ships often operate together. Eger had a unique wedge-shaped hull which gave it more stability and space for a helicopter pad. The current Marjata does not have the helicopter pad but does have more internal space. Both ships carry about 60 personnel, most of them technicians to operate the ELINT equipment.

The Russian EW problems became acute after 2016. In late 2018 Finland and Norway went public with accusations that Russia deliberately jammed GPS signals in northern Finland and Norway from a location near the Russian military bases in the Kola Peninsula on the Barents Sea. The jamming took place between October 25th and November 7th 2018 as NATO held its largest training exercise since the Cold War ended in 1991. Russia denied any responsibility even though they are known to possess long-range jammers, for GPS and other signals. Norway said they had tracked the jammer to a specific location but, when Russia refused to admit any involvement, Norway refused to explain how they tracked the signal because that would provide Russia with information on Norwegian EW equipment that might be useful to them.

What was curious about this incident was that it had no impact on the NATO military exercises and even commercial airliners operating in the area had backup (INS) systems in case GPS signals were not working properly. The potential victims were civilians with smaller aircraft or on the ground who depend on commercial navigation gear using GPS. Then again, that may have been the point because Russian firms have long been producing a wide variety of GPS jammers that are generally ineffective against military GPS users but would be useful for criminals, terrorists or anyone involved in irregular warfare (as Russia has been in Ukraine since 2014). As for the damage to diplomatic relations with Norway and Finland, these two nations need no reminders of what a bad neighbor Russia is and historically has been.

NATO nations have long been aware of the Russian EW activities, especially the growing number of Russian jamming systems. Some of these were demonstrated in Syria and Ukraine, where Russia considers complaints about disruption as free advertising for this equipment. Russian GPS jammers have some military use but also have appeal for non-military customers. For example, in 2016 Russia began marketing a new, portable GPS jamming system called Pole 21. This system was special because individual Pole 21 units can be mounted on existing cell phone towers (or alone on portable towers). Each Pole 21 unit can put out 20 watts and jam signals from GPS (as well as the similar GLONASS, Galileo and Beidou systems) out to 80 kilometers. Pole 21 is also designed to act as a backup transmitter of commands for nearby Pole 21 units. In this way, the Russians say a wide area can quickly be protected from GPS guided missiles and bombs as well as shutting down vehicle GPS systems. The Russians admit that Pole 21 would also cripple all commercial GPS devices in the jammed areas. The biggest problem with Pole 21 is that Russia has been developing and selling many different GPS jamming systems since the mid- 1990s and they have proved to be ineffective in combat. Yet Russian firms keep producing these types of jammers because there is a market for them. ELINT operations, like those of the two Norwegian ELINT ships (and those of other NATO nations as well as ELINT aircraft), are intense off the north Russian coast because that’s where Russia tests most of this EW gear and does so more often than off the Pacific Coast or in the Black or Baltic Seas. These two Norwegian EW ships are particularly annoying for the Russians because the Norwegians have a knack for showing up when there is EW action the Russians would prefer to keep from outsiders.

Developments in GPS and other signal jamming is a big deal. By 2010 the U.S. Department of Defense was spending a lot of money on developing a jam-resistant replacement, or backup (depending on who you talk to), for GPS. The best candidate was an improved INS (Internal Navigation System). INS has existed for nearly a century but have gotten smaller, cheaper, and more reliable as electronic components did the same since the 1960s. Basically, INS uses three gyroscopes and three accelerometers to constantly measure changes in direction and changes in velocity. With that, the INS will always know where it is in relation to its initial starting point (which can be obtained initially via unjammed GPS or older means). Miniature INS devices have long served as a backup for GPS guided weapons. But while GPS guidance can land a bomb or missile within 10 meters (32 feet) of a target, INS can only achieve 30-meter accuracy. GPS also has the advantage of not needing to have its exact position entered after the INS is turned on. On the upside, that means INS cannot be jammed or spoofed. These micro- gyroscopes and accelerometers have become standard in many smartphones to not only detect orientation, but also movement. The use of this tech by smartphone makers resulted in even cheaper and more reliable designs that proved very useful for military INS backups for GPS.

After 2010 American researchers created new concepts and technology that could greatly improve current INS accuracy and cost. By 2013 prototypes proved they could be nearly as accurate as GPS and almost as small. Cost was still a factor, with the new INS still costing more than 10 times what GPS does. But this is all a big improvement over what has been available before. The new INS can now be used to monitor GPS and alert the operator that their GPS has either developed a problem or is being jammed. The new INS is also useful for some fast missiles that often lose their GPS signal as they maneuver. Another urgent chore for INS is to alert users that their GPS is being spoofed (sent a false signal that is luring the user away). Thus, even with the ability of anti-jamming tech to keep up with jammer technology, there is still a demand for a new INS. That has led to smaller, cheaper and more accurate INS systems. Aside from airlines and commercial shipping, there is not much of a mass market for these new INS systems because for most consumers GPS is reliable enough to keep the INS gear out of the consumer market. But the demand from the airlines, shipping companies and the military is huge. However, the tech remains popular for smartphones and other consumer items, but not as INS. That is changing as some smartphone (and smartwatch) manufacturers seek to use INS to automatically fill in if the user temporarily losses the GPS signal.

Many Department of Defense navigation and electronics experts believe current anti-jamming efforts are sufficient to keep military GPS use viable, but the new INS technology has attracted a lot of attention because in the military a backup is something that is always appreciated because when equipment fails in combat it’s literally a matter of life or death. Meanwhile, the U.S. is building and testing more compact GPS anti-jamming systems for smaller (as small as 200 kg/440 pounds) UAVs. This is part of a program to equip all American UAVs, even the smallest ones, with more secure GPS. While all UAVs can be “flown” by the operator, the GPS makes it a lot easier for the operator to keep track of exactly where his UAV is at all times and sometimes the UAV is programmed to simply patrol between a series of GPS coordinates. If the GPS jams or fails the operator can usually use the video feed to find landmarks on the ground and bring the UAV back to where it can be seen and landed.

While American troops have not yet encountered much (if any) battlefield GPS jamming, the threat exists. Currently, American troops can experience this sort of thing in Ukraine (where NATO nations have military advisors and observers) and Syria. This jamming tech is also showing up in Iraq and Afghanistan. Before that, the most tangible evidence of this came from North Korea, which has long made, sold, and itself used GPS jammers. In 2012 North Korea attacked South Korea with a massive GPS jamming campaign. The jamming began in late April and continued for over two weeks. It took less than a day to confirm that the signal was coming from North Korea and was mainly aimed at the South Korean capital (Seoul). The jamming had little impact inside the city itself (the ground-based jamming signal was blocked by buildings and hills) and was only noted by several hundred aircraft landing or taking off from local airports and over a hundred ships operating off the coast. In all these cases the ships and aircraft had backup navigation systems, which were switched on when GPS became unreliable. This is how navigation systems, especially those that rely on an external (satellite) signal are designed.

There are several approaches to defeating GPS jamming, and knowing which one each American GPS guided weapon uses makes it easy to develop a way to jam the "jam-proof" GPS. The U.S. Air Force is understandably reluctant to discuss what they are doing. Given the cost of jam proofing all existing GPS weapons, it's more likely that jam-proof GPS weapons will only be used against targets where the GPS accuracy is vital. Against most targets the accuracy provided by the inertial guidance system will do. Also note that you can bomb GPS jammers with a bomb equipped with a guidance system that homes in on a GPS jamming signal. For that reason, it's thought that any use of GPS jammers will involve dozens of jammers in each area so protected. The GPS jamming has no effect on the even more accurate laser-guided bombs, and some countries buy smart bombs with both laser and GPS/INS systems. Most countries are working on anti-jamming tech in anticipation of encountering more jamming if war comes.

The Norwegian ELINT ships have been prime sources of details on how the Russian jammers and other EW equipment works when turned on. The Marjata and Eger are considered major NATO ELINT assets, which is one reason Eger (the third Marjata) was kept in service when the current Marjata showed up in 2016. Eger is 28 years old but worth the time and expense to keep her going.




Help Keep Us From Drying Up

We need your help! Our subscription base has slowly been dwindling.

Each month we count on your contributions. You can support us in the following ways:

  1. Make sure you spread the word about us. Two ways to do that are to like us on Facebook and follow us on Twitter.
  2. Subscribe to our daily newsletter. We’ll send the news to your email box, and you don’t have to come to the site unless you want to read columns or see photos.
  3. You can contribute to the health of StrategyPage.
Subscribe   Contribute   Close