Electronic Weapons: 3-D Will Save Your Life


October 3, 2009: The U.S. Department of Defense wants to provide the troops with a 3-D view of the battlefield. A decade ago, this seemed to be a science fiction fantasy. But since then, there are enough electronic eyes on the battlefield to make this happen. Developments in graphics software, and more powerful, and cheaper, computers has made 3-D representations of the real world easier to obtain. For the military, a 3-D view of the battlefield is a life saver, and a big combat advantage. Current software enables the user to quickly move around this 3-D view, checking for how things look from different vantage points (especially those of the enemy.)

There's one big drawback to all this. There isn't enough bandwidth (data transfer capability) available on the battlefield, to move around the data needed to keep the 3-D view updated.. Once this problem is resolved, the troops can get their real-time 3-D battlefield map. But the bandwidth problem has proved to be a real tough one. Mainly because high speed data transfer on the battlefield first became possible via satellite communications. And that soon ran into bandwidth shortages.

During the 1990s, the U.S. armed forces moved to satellite communications in a big way. This made sense, especially where troops often have to set up shop in out of the way places and need a reliable way to keep in touch with nearby forces on land and sea as well as bases and headquarters back in the United States. At the time of the 1991 Gulf War, there was enough satellite military communications capacity (commonly known as "bandwidth") in the Persian Gulf for about 1300 simultaneous phone calls. Or, as the geeks put it, 100 mega (million) bits per second. But while the military has a lot more satellite capacity now (the exact amount is a secret), demand has increased even faster. UAV reconnaissance aircraft use enormous amounts of satellite capacity. The Global Hawk needed 500 megabits, and Predators about half as much. The major consumer of bandwidth is the live video. UAVs have other sensors as well, as do aircraft. A voice radio connection only takes about 2,000 bits per second, and each of the multiple channels needed to control the UAVs use about the same. But it adds up, especially since the military wants high resolution video. At the moment, the U.S. has far more demand for satellite communications than it can support. As a result, many of  the Predator, Reaper and Global Hawk UAVs in combat zones lack sufficient bandwidth to send all their video back to the United States. Data compression and using lower resolution is often necessary, or using satellite substitutes (aircraft carrying transponders) to send the video to local users. More data compression and satellite substitutes appears to be the likely solution to the problem.



Article Archive

Electronic Weapons: Current 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 



Help Keep Us Soaring

We need your help! Our subscription base has slowly been dwindling. We need your help in reversing that trend. We would like to add 20 new subscribers this month.

Each month we count on your subscriptions or contributions. You can support us in the following ways:

  1. Make sure you spread the word about us. Two ways to do that are to like us on Facebook and follow us on Twitter.
  2. Subscribe to our daily newsletter. We’ll send the news to your email box, and you don’t have to come to the site unless you want to read columns or see photos.
  3. You can contribute to the health of StrategyPage. A contribution is not a donation that you can deduct at tax time, but a form of crowdfunding. We store none of your information when you contribute..
Subscribe   Contribute   Close