Attrition: India, Russia And Ejection Seat Maintenance


December 4, 2014: In October India again grounded all 271 of its Su-30 jet fighters after one crashed on the 14th. The two man crew reported that the ejection sears had automatically activated as the plane was coming in for a landing. Aside from the unwanted activation the seats performed as designed. But without its pilot, the expensive aircraft crashed. More than a month later it was decided to lift the grounding order, although there was no explanation as to why the ejection seats acted on their own. Worse, this is the third time this has happened since 2008. India blames the Russians, but the Russians point out that their ejection seats have an excellent record of reliability, except for the ones used, and maintained by, India. The implication is that the cause is, once more, shoddy Indian maintenance of perfectly good equipment. This is a sore point within India because it is true, but India does not like to discuss the matter publically. In this case the Russians have evidence on their side. Since World War II over 10,000 aircrew have successfully used ejection seats (mostly of Western manufacture). Very few have died in ejection seat related accidents. Russian and Chinese made seats have proved to be nearly as reliable as the Western ones. But all ejection seats are vulnerable to poor maintenance.

An example of this occurred in 2007. In this accident a navigator in the rear seat of a British Tornado jet fighter died when he fell out of the aircraft. Details of the accident took three years to be made public. It all began with the troublesome ejection seat that had just undergone some updates and was undergoing a flight check. Some of the maintenance work involved the ejection seats. But the work on the rear ejection seat left a small (5 cm/two inch) metal part installed incorrectly. This allowed the ejection seat to come lose when the aircraft was momentarily upside down. Part of the ejection system worked, and the canopy came off. But the rockets in the ejection seat did not ignite, and the navigator hit his head on the tail of the aircraft. Worse, the parachute did not deploy from the seat, and the navigator, still strapped in, fell nearly 2,000 meters (6,400 feet) to his death. Several people were involved in checking out the ejection seat during and after this maintenance, and it took a while to sort out who was responsible for what. It turned out to be a maintenance problem, not one involving design or manufacture.

Ejection seats costs between $200,000-300,000. Most ejection seats weigh about half a ton and are complex bits of technology. There's a lot that can go wrong but rarely do you have accidents, and those are usually because of poor maintenance. Ejection seats became essential as military aircraft became so fast that a pilot could not safely climb out of the cockpit and jump. With the higher speed, there was the danger of hitting the tail. Also, escaping pilots were often injured or stunned and unable to get out quickly enough.

The first ejection seat design was developed in Germany, where the seats were first installed in their He 219 night fighters, in 1943. These used compressed air to propel the seat out of the aircraft. A year later rocket propelled seats were installed in the He-162 jet fighter. By the end of the war, all of Germany's jets were equipped with rocket propelled ejection seats. While the Swedish firm SAAB had also developed a rocket propelled ejection seat, it was British firm Martin-Baker that jumped in after World War II and created a design that quickly filled the needs of most Western air forces, including the RAF (British Royal Air Force).

The U.S. Air Force long insisted on using only American made ejection systems but the U.S. Navy stayed with Martin-Baker because the American ejection seat did not function as well at very low altitudes (where a lot of naval aviators have to eject during carrier operations). Martin-Baker supplies about two-thirds of the ejection seats for Western fighter aircraft. The other major supplier of ejection seats was the Soviet Union. Those Soviet era manufacturers continue to produce good ejection seats for Russian aircraft and some foreign customers. China is becoming a major player in this area, usually exporting Chinese made ejection seats in Chinese made aircraft. The Czech Republic and Romania also manufacture lower end ejection seats. Western manufacturers produce about a thousand seats a year, while Russia and China produce less than half as many, almost all of those seats are for locally made aircraft.

In 2012 China developed and put into service a locally manufactured third-generation ejection seat for its jet fighters. This type of ejection seat contains sensors and a microprocessor that adjust the thrust of the rockets that propel the ejection seat (and the pilot) from the aircraft, taking into account the speed and direction of the aircraft. Most ejection seats in service are third-generation. The fourth-generation seats allow the pilot to control the movement of the seat while ejecting. Both Russian and Chinese manufacturers make an effort to keep up with new technology, but all the manufacturers realize that the key to staying in business is “safety first.”




Help Keep Us From Drying Up

We need your help! Our subscription base has slowly been dwindling.

Each month we count on your contributions. You can support us in the following ways:

  1. Make sure you spread the word about us. Two ways to do that are to like us on Facebook and follow us on Twitter.
  2. Subscribe to our daily newsletter. We’ll send the news to your email box, and you don’t have to come to the site unless you want to read columns or see photos.
  3. You can contribute to the health of StrategyPage.
Subscribe   Contribute   Close