Armor: Smarter Robotic Vehicles Roam the Earth

Archives

November 6, 2007: For the third time since 2004, the U.S. Department of Defense has sponsored a race for robotic vehicles. For several decades, the U.S. Department of Defense has been trying to build a robotic vehicle. But in early 2004, the Department of Defense decided to try something different, and give enterprising civilian organizations a chance to show what they could do. DARPA (Defense Advanced Research Projects Agency) held the DARPA Grand Challenge. Put simply, the first robotic vehicle (moving completely under software control, with no human intervention) that could complete a 240 kilometer course, would get a million dollars for its designers. No one even came close. But a second Challenge, held in late 2005, yielded several finishers, and the first one picked up the million dollar prize for navigating a 212 kilometers cross country course in just under seven hours. All vehicles operated under software control, as true robots.

The third "Challenge" race was held in late 2007, and had a two million dollar prize for the first vehicle to complete a 60 kilometer course through an urban environment (an abandoned air force base) in under six hours.

While much progress has been made, the basic problem is, and always has been, that there are a lot more obstacles for a robotic land vehicles to deal with on it's own. At sea, and in the air, it's a much different, and much simpler, situation. Over a century ago, naval torpedoes were built that could make sufficient adjustments, while under way, to reach their intended target. Guided missiles came along half a century ago and achieved the same thing in the air.

The DARPA contest has convinced developers of robotic vehicles that they have to give their creations a large amount of basic knowledge of obstacles, and how to deal with them, to consistently succeed. Until now, robotic vehicles depended on TV cameras (linked to computers that could detect traversable paths), laser rangefinders and the like to "learn on the go." But for a robotic vehicle to succeed, it needs some basic knowledge of the world. There is sufficient cheap computing power available to provide that, and robotic vehicles make use this approach. This is also creating the kind of "knowledgeable robots" that have for so long been popular in Science Fiction literature.

One of the goals of all this is a robotic "infantry packbot" (a low slung vehicle that brings supplies to infantry deep in a combat zone) with a speech recognition and voice synthesizer module so that, when the troops wondered aloud who the packbot took so long to get the stuff to them, the vehicle could respond, "there was a lot of mud down the hill today and I had to go around it." Equipping a robotic vehicle with sensors that can detect water, mud, and the depth of both, is the sort of thing a successful "packbot" will require to survive on a battlefield. Being able to respond to audible commands is another feature the troops have already requested for such a vehicle. So the effort is not just to build a robotic vehicle, but a robot in the classic sense. That's how much computing power is required to enable a machine to go for a cross country trip over unfamiliar terrain, and succeed. Eventually, this will lead to robotic combat vehicles.

But first, the military wants to create a robotic truck that can move supplies over roads, or cross country, with only a few troops supervising a dozen or more robotic vehicles. This means you need fewer troops in the combat zone, and fewer troops will become casualties.

The DARPA Challenge races have been a bonanza in terms of advancing the state of the art for robotic vehicles. For less than $10 million in prize money and expenses, the Department of Defense has created new technology that would have otherwise cost more than $100 million, and taken a lot longer to perfect.

 

X

ad

Help Keep Us From Drying Up

We need your help! Our subscription base has slowly been dwindling.

Each month we count on your contribute. You can support us in the following ways:

  1. Make sure you spread the word about us. Two ways to do that are to like us on Facebook and follow us on Twitter.
  2. Subscribe to our daily newsletter. We’ll send the news to your email box, and you don’t have to come to the site unless you want to read columns or see photos.
  3. You can contribute to the health of StrategyPage.
Subscribe   contribute   Close