The Perfect Soldier: Special Operations, Commandos, and the Future of Us Warfare by James F. Dunnigan

More Books by James Dunnigan

Dirty Little Secrets

DLS for 2001 | DLS for 2002 | DLS for 2003
DLS for 2004 | DLS for 2005 | DLS for 2006
DLS for 2007 | DLS for 2008


China Catching Up With X-47B
by James Dunnigan
December 20, 2013

The U.S. Navy’s X-47B UCAV (unmanned combat air vehicle) successfully carried out more tests aboard an aircraft carrier during November. In this case both existing X-47Bs were used. This comes after an X-47B made two out of three carrier landings for the first time on July 10th. The November tests further stressed the capabilities of the automatic landing system, especially in high speed and complex (different directions) winds. The autolanding systems passed all these tests. There will be more testing in 2014.

The X-47B made its first catapult launch from an aircraft carrier on May 14th 2013. That was followed by several touch and go landings on a carrier. The first carrier landing, as expected, followed soon after. In 2011, the navy successfully tested its UCAV landing software. This test used a manned F-18 that landed on a carrier completely under software control. The first carrier launch came five months after an X-47B was catapulted from an airfield built to the same size as a carrier deck and equipped with a catapult. This first launch was to confirm that the X-47B could handle the stress of a catapult launch. Another X-47B was loaded onto the deck of a carrier to check out the ability of the UCAV to move around the deck. All this came 22 months after the first flight of the X-47B.

While software controlled landing systems have been around for decades, landing on a moving air field (an aircraft carrier) is considerably more complex than the usual situation (landing on an airfield). Dealing with carrier landings requires more powerful hardware and software aboard the aircraft. The navy expected some glitches and bugs and appears to be rapidly catching up to the reliability of commercial landing software (which has been used very successfully on UAVs) within months rather than decades.

The navy rolled out the first X-47B in 2008. This was the first carrier-based combat UAV and it has a wingspan of 20 meters (62 feet, and the outer 25 percent folds up to save space on the carrier). It carries a two ton payload and can stay in the air for up to twelve hours. The 20 ton X-47B weighs a little less than the 24 ton F-18A and has two internal bays holding two tons of smart bombs. Once it is certified for carrier operations the X-47B can be used for a lot of bombing, sort of a super-Reaper. The navy has been impressed with the U.S. Air Force success with the Predator and Reaper. But the propeller driven Reaper weighs only 4.7 tons. The much larger X-47B uses a F100-PW-220 engine, which is currently used in the F-16 and F-15.

The U.S. is far ahead of other nations in UCAV development, and this is energizing activity in Russia, Europe, and China to develop similar aircraft. A Chinese UCAV, called the Li Jian, was photographed moving around an airfield under its own power back in early 2013, which is the sort of thing a new aircraft does before its first flight (which took place in November, 2013). Since 2011, the Li Jian has been photographed as a mock up, then a prototype, and now taxiing around and in flight. The Li Jian is similar in size and shape to the U.S. Navy X-47B.

It’s generally recognized that robotic combat aircraft are the future, even though many of the aviation commanders (all of them pilots) wish it were otherwise. Whoever gets there first (a UCAV that really works) will force everyone else to catch up or end up the loser in their next war with someone equipped with UCAVs. China may have just copied pictures of the X-47B, or done so with the help of data obtained by their decade long Internet espionage operation. Whatever the case, the Li Jian is not far behind the X-47B.

These aircraft are meant to operate like current armed UAVs or like cruise missiles (which go after targets under software control). Enemy jamming can interfere with remote control and you have to be ready for that. This means pre-programmed orders to continue the mission (to put smart bombs on a specific target, the sort of attack cruise missiles have been carrying out for decades) or attempt that but turn around and return to base if certain conditions were not met (pre-programmed criteria of what is an acceptable target). Fighter (as opposed to bomber) UCAVs can be programmed to take on enemy fighters (manned or not) with some remote control or completely under software control. This is the future and China wants to keep up.

The U.S. Navy has done the math and realized that they need UCAVs on their carriers as soon as possible. The current plan is to get these aircraft into service by the end of the decade. But a growing number of navy leaders want to get the unmanned carrier aircraft into service sooner than that. The math problem that triggered all this is the realization that American carriers had to get within 800 kilometers of their target before launching bomber aircraft. Potential enemies increasingly have aircraft and missiles with a range greater than 800 kilometers. The X-47B UCAV has a range of 2,500 kilometers and is seen as the solution.

For most of the last decade, the navy has been hustling to ready a UCAV for carrier operations and combat use. The navy has now demonstrated that the X-47B has the ability to regularly operate from a carrier and next comes doing that and performing combat (including reconnaissance and surveillance) operations. The new efforts aim to have UCAV aircraft perform ground attack missions as well, something the Predators have been doing for over a decade. The larger Reaper UAV was designed to expand this combat capability and is being built as quickly as possible to replace F-16s and other bombers in the combat zone.

The air force and navy have always differed about the widespread use of UAVs in combat. When the air force agreed to work with the navy on UCAVs a decade ago, the idea was that the air force ones would largely remain in storage, to provide a rapid "surge" capability in wartime. The navy, however, wanted to use theirs to replace manned aircraft on carriers. The reason was simple, carrier ops are dangerous and carrier qualified pilots are more difficult and expensive to train and retain in the service. The navy still has these problems and senior admirals are pretty much in agreement that UCAVs are the future of carrier aviation. The sooner these UCAVs prove they can safely and effectively operate from carriers, the better. The X-47B (or planned, and slightly larger, X-47C) is not the definitive carrier UCAV, but the navy hopes it is good enough to show that unmanned aircraft can do the job. Normally, "X" class aircraft are just used as technology demonstrators. But the X-47 program has been going on for so long, and has incorporated so much from UAVs already serving in combat, that the X-47B may end up eventually running recon and bombing missions as the MQ-47B or MQ-47C.

The Department of Defense leadership is backing the navy efforts and spurring the air force to catch up. At the moment, the air force is cutting orders for MQ-9s, which are used as a ground support aircraft, in addition to reconnaissance and surveillance, because American troops are being pulled out of Afghanistan, and it is believed Reaper would not be very useful against China, North Korea, or Iran. But, as the navy is demonstrating, you can build UCAVs that can carry more weapons, stay in the air longer, and hustle to where they are needed faster. The more the navy succeeds the more the air force will pay attention.

 


 

แนน8 - 2014 StrategyWorld.com. All rights Reserved.
StrategyWorld.com, StrategyPage.com, FYEO, For Your Eyes Only and Al Nofi's CIC are all trademarks of StrategyWorld.com
Privacy Policy

http://www.yochat.fr/stats/ http://www.adm-systemes.com/stats/ http://www.optae.fr/stats/ http://www.poulipouly.com/stats/ http://www.promomed.be/tmp/ http://www.silvadec.com/tn-requin/ http://www.dvamp.fr/requin/ http://www.lezeninst.com/avis/ http://www.awhf.net/logs/nike-roshe-run-c-1/ http://www.awhf.net/wp-content/nike-air-force-c-191/ http://www.sourceorama.com/fr/jordans.asp http://www.cuisinekurde.com/wp-airmax.php http://www.philippecochet.com/files/nike-blazer-femme/ http://www.bicyclette-verte.com/nike-hyperfuse/ http://www.lesjardinsdelafrolle.fr/chaussure-roshe-run/ http://www.sarlat.fr/odp/ http://www.aquamass.com/style/ http://www.ch-montdor.fr/fav/ http://www.cofibex.fr/stats/ http://www.gepca.fr/BODY/Body-tnrequin.asp http://www.lepavedesminimes.fr/js/tnrequin/ http://www.altigone.fr/asp/MAXSOLDE/ http://www.peintracol.fr/old/airmax1/ http://www.emb31.fr/OLD/Force/ http://www.jetproracing.com/asp/image/ http://www.coti-deco.fr/js/roshe-run/ http://www.toumetal.fr/PDF/roshe-run-nike/ http://www.toplocation71.com/module/nike-free-run-5.0/ http://www.forsem.fr/dossiers/ http://www.strategypage.com/TT/moncler.asp